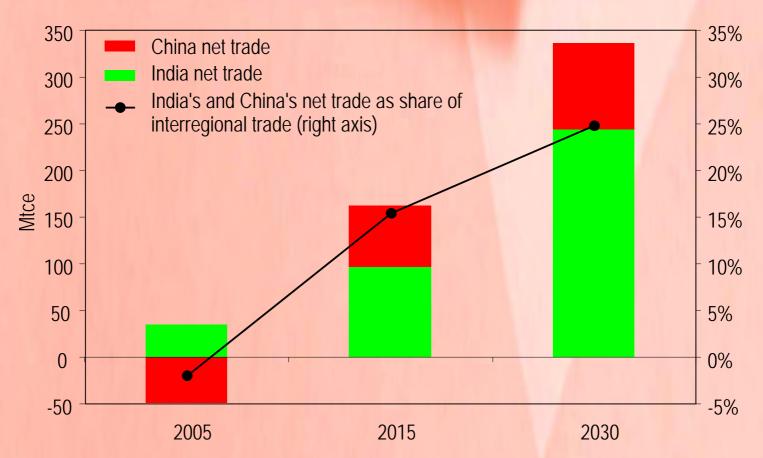


Recent Developments in Clean Coal Technologies

2nd South East Europe Energy Dialogue International Conference Thessaloniki 21-22 May 2008

Dr Geoffrey Morrison Programme Manager, IEA Clean Coal Centre

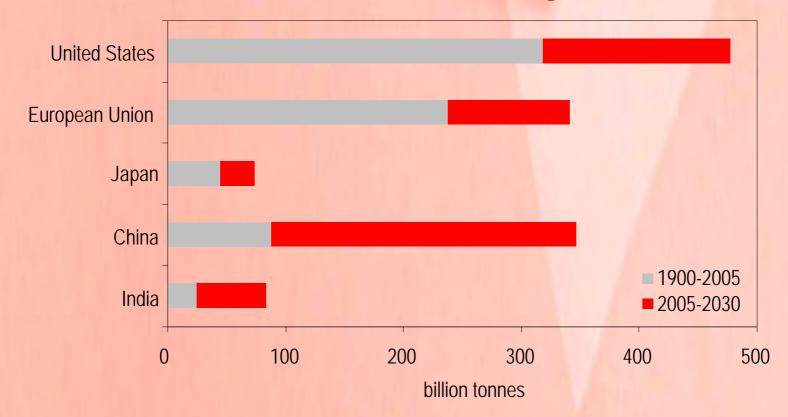
© IEA Clean Coal Centre



WORLD ENERGY OUTLOOK 2007

Courtesy of IEA, Paris

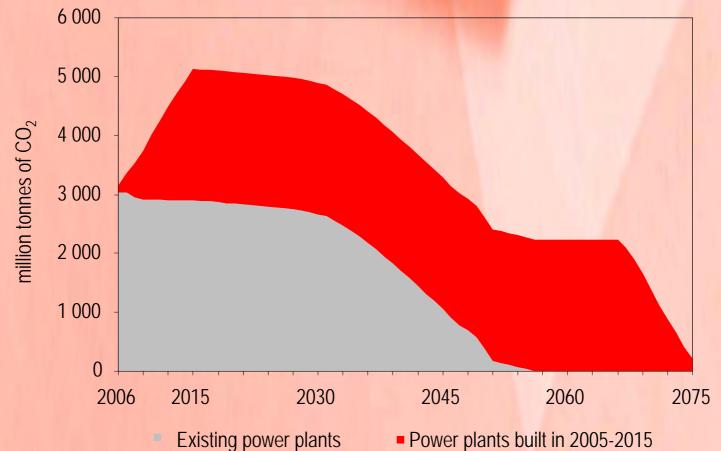
China & India Coal Imports


China recently became a net coal importer like India, with both putting increasing pressure on international coal markets

© IEA Clean Coal Centre

China & India in Global CO₂ Emissions

Cumulative Energy-Related CO₂ Emissions



Around 60% of the global increase in emissions in 2005-2030 comes from China & India

© IEA Clean Coal Centre

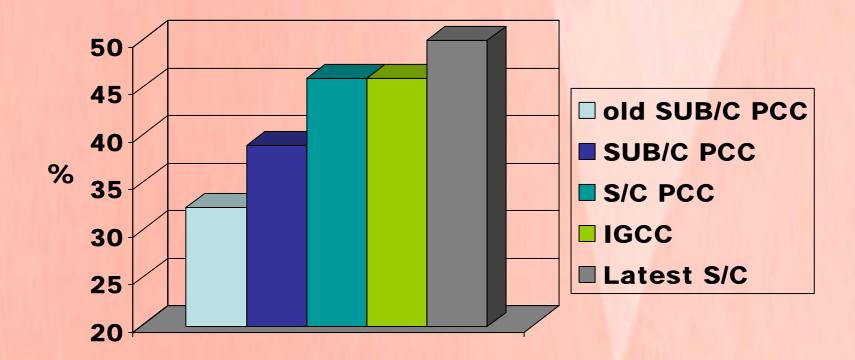
CO₂ Emissions from Coal-Fired Power Stations built prior to 2015 in China & India

Capacity additions in the next decade will lock-in technology & largely determine emissions through 2050 & beyond

© IEA Clean Coal Centre

World energy outlook

- Global energy system is on an *increasingly* unsustainable path
- China and India are transforming the global energy system by their sheer size
- Challenge for all countries is to achieve transition to a more secure, lower carbon energy system
- New policies now under consideration would make a major contribution
- Next 10 years are critical
 - → The pace of capacity additions will be most rapid
 - → Technology will be "locked-in" for decades
 - → Growing tightness in oil & gas markets
- Challenge is global so solutions must be global



COAL FOR POWER TODAY

What is State-of-the-Art and what are the prospects?

Indicative efficiencies of coal-fired power technologies (% net, LHV basis)

Nordjylland 3, Denmark – highlights

USC, tower boiler, tangential corner firing, int. bituminous coals, cold sea water

Most efficient coal-fired plant

Operating net efficiency 47% LHV, power only mode/44.9% HHV (not annual)

High steam conditions 29 MPa/582°C/580°C/580°C at boiler by early use of new materials (P91)

Large number of feedwater heating stages

Double reheat has prevented LP blade erosion

- Very low emissions and full waste utilisation
- NOx abatement Combustion measures and SCR
- Particulates removal ESP
- Desulphurisation Wet FGD

© IEA Clean Coal Centre

Isogo New Unit 1, Japan – highlights

USC, tower boiler, opposed wall firing, int bitum and Japanese coals, warm sea water

- Near zero conventional emissions (NOx 20 mg/m³, sulphur oxides 6 mg/m³, particulates 1 mg/m³, at 6% O₂, dry); full waste utilisation
- Highest steam conditions: 25.0 MPa/600°C/610°C at turbine: ASME CC 2328 steels in S/H; P122 for main steam pipework
- Operating net efficiency >42% LHV/40.6% HHV
- Efficiency tempered slightly by 21°C CW, fewer FW heating stages
- Dry regenerable activated coke FGD (ReACT)
- NOx abatement
 Combustion measures and SCR
- Particulates removal
 ESP
- Isogo New Unit 2 will use ReACT specifically for multi-pollutant control, including mercury

E.On 50% efficient plant

... 50plus by using new materials

Location	Wilhelmshaven
Efficiency	50 %
Capacity	500 MW _{el}
Investment	1 billion €
Start of operation	2014

© IEA Clean Coal Centre

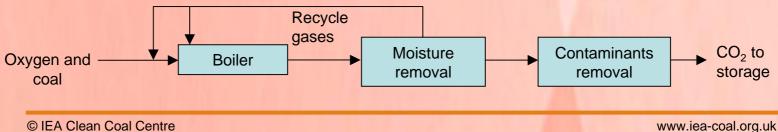
China - Typical (old) 200 MW plant

© IEA Clean Coal Centre

Wangqu 2 x 660 MW power plant

Huaneng Yuhuan power plant

CO₂ capture - combustion plant


Post-combustion capture - Flue gas amine scrubbing:

- Could be ordered now, experience on gas flows to 50 MWe •
- Issues such as corrosion, solvent degradation controllable •
- Efficiency penalty high but decreasing (~8-14% points)
- **Esbjerg CASTOR slipstream project** •

Oxyfuel firing:

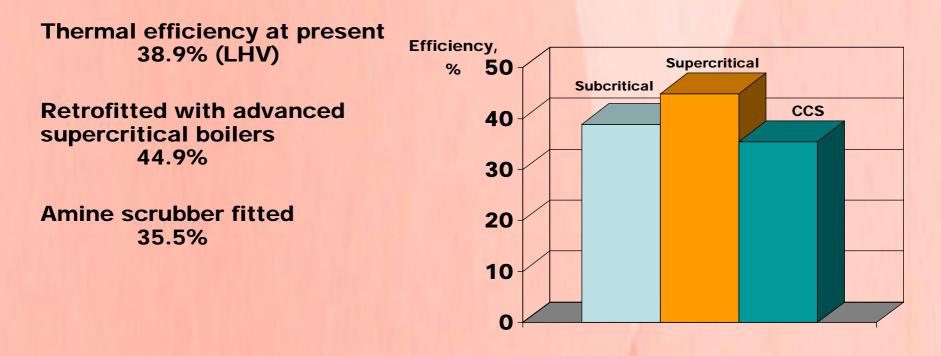
- Tested at ~1MW pilot scale •
- 30 MWe retrofit Australia; ENCAP 30 MWth Germany, 1 MWth CFBC France
- Efficiency penalty appears similar to chemical scrubbing •
- New oxygen production technology would reduce penalty •

CASTOR CO₂ capture pilot plant

Esbjergværket

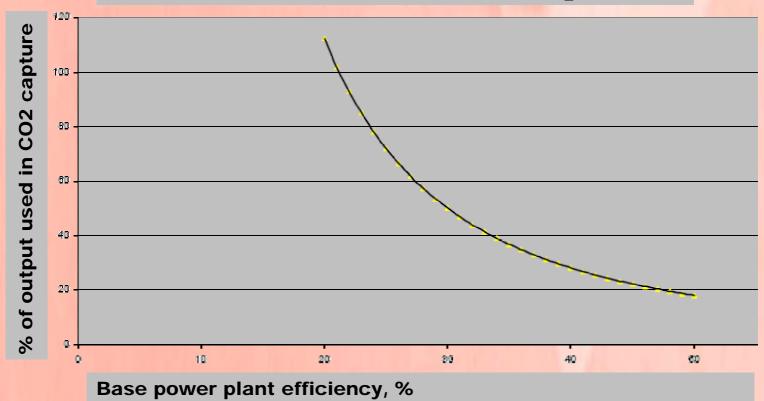
Esbjerg power plant Capacity: 1 t CO₂ / h 5000 Nm3/h flue gas (coal combustion) In operation since early 2006

Nordjyllands 3 Denmark


ADVANTAGE NO.

Likely to be fitted with post combustion capture demonstration unit; linked to Vested aquifer 30 km away: announced 5 Feb2008

Effect of post combustion carbon capture on plant thermal efficiency

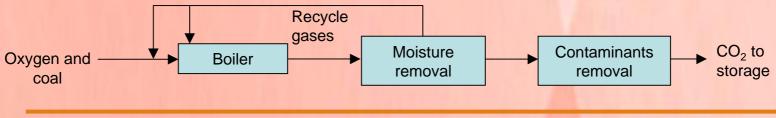

Ratcliffe power station (E.ON, UK)

Efficiency and cost implications of most CO₂ capture options

Per cent of plant power used in CO₂ capture


Source: RWE npower

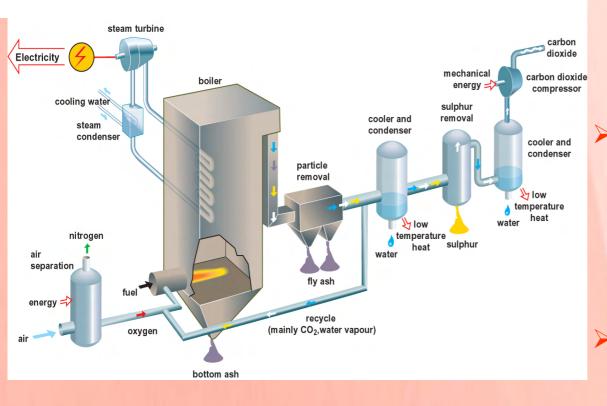
CO₂ capture - combustion plant


Post-combustion capture - Flue gas amine scrubbing:

- Could be ordered now, experience on gas flows to 50 MWe
- Issues such as corrosion, solvent degradation controllable
- Efficiency penalty high but decreasing (~8-14% points)
- Esbjerg CASTOR slipstream project

Oxyfuel firing:

- Tested at ~1MW pilot scale
- 30 MWe retrofit Australia; ENCAP 30 MWth Germany, 1 MWth CFBC France
- Efficiency penalty appears similar to chemical scrubbing
- New oxygen production technology would reduce penalty



© IEA Clean Coal Centre

Vattenfall Oxy Fuel Technology (Courtesy Vatenfall)

The size of the plant will be about 30 MWth and the energy will be utilized

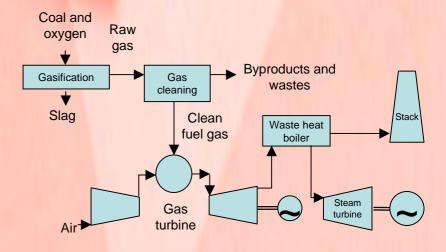
The technology used is the "Oxyfuel technology"

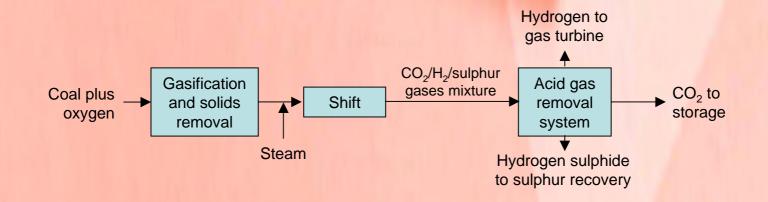
> Adjacent to the Schwarze Pumpe Power plant and will utilise infrastructure.

Fuel will be lignite, and hard coal

Australia – Oxy-fuel project

Joint feasibility study with Japan Oxy-fuel retrofitting with CO₂ capture and geological storage Two stages:


- Stage 1 Detailed engineering feasibility study on the technical requirements and costs to convert an existing 30MWe PCC boiler to oxy-firing
- Stage 2 Establishment of an oxy-fired PCC demonstration plant capable of producing up to 150,000 tonnes per year of CO2 for geological storage over a test period of 3 to 4 years



Integrated gasification combined cycle (IGCC)

- Demonstrations in USA and Europe and, shortly, in Japan
- Cost and availability concerns have held back orders but reference plants soon
- Efficiency ~40-43% LHV
- Very low emissions, mercury capture simple

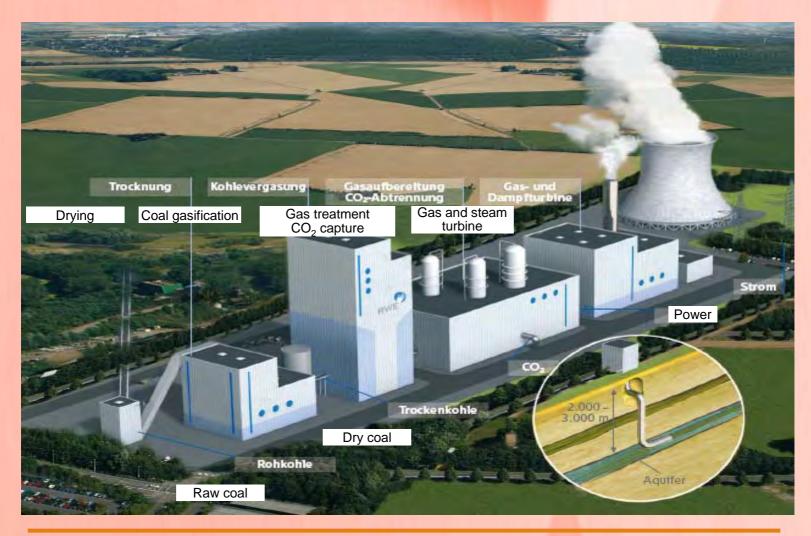
CERT Integrated gasification combined cycle (IGCC) plants: CO₂ capture

- Physical solvent scrubbing of CO₂ is established in chemical industry
- Lower energy penalty than for PCC prospect of only ~ 4-8% points
- Experience of E-class GTs on 95% H₂
- Other methods of separation available
- Other schemes without shift

IGCC in Japan (courtesy of J Coal)

IGCC (Integrated Coal Gasification Combined Cycle)

- Clean Coal Power R&D Co., Ltd.
- Air blown, entrained-flow gasifier
- 250 MW demonstration, 2007-2009
- High efficiency (20% CO₂ reduction)


IGFC (Integrated Coal Gasification Fuel Cell Combined Cycle)

- EAGLE Project
- Oxygen blown, entrained-flow gasifier
- 150 t/d pilot test, 2001-2009
- High efficiency (30% CO₂ reduction)
- CO₂ capture test, 2007-

RWE's Proposed IGCC with CCS plant

© IEA Clean Coal Centre

CO₂ Capture Ready Plant (IEA Greenhouse Gas R&D Programme)

Avoids the risk of stranded assets and 'carbon lock-in'

Developers must eliminate factors which would prevent installation and operation of CO₂ capture

This might include

- A study of options for capture retrofit
- Include sufficient space and access for additional facilities
- Identify reasonable route(s) to storage of CO₂

Issues requiring urgent attention

- CO₂ capture demonstrations of all 3 generic routes then commercial deployment around 2020
- What constitutes "capture ready" and how might it be introduced
- Cost reduction for capture
- Financing of early projects
- EU based CCS projects within the ETS; augmented by mandatory requirements for CO₂?
- Demonstrate safety of different storage options gain public confidence
- Regulatory framework for transport and storage
- Legal issues of sub-sea storage
- Long term liability for storage
- How to get up take in non-OECD countries?

The End!

Thank you for listening

geoffrey.morrison@iea-coal.org.uk