ENDESA HELLAS

13th National Conference "ENERGY & DEVELOPMENT '08"

An Energy Strategy for Accomplishing the New EU Targets

Large Scale Thermoelectrical Cogeneration 334 MW CHP Its contribution to enhanced energy efficiency

P. S. Vogiatzis

Project Manager

Institutions & Regulations

Climate and Energy Targets: A technology and social approach

- Reduction of primary energy consumption and increase of Energy Efficiency
- Reduction of greenhouse gases by 20% compared to 1990 levels (or 30% in case of adoption of a post-Kyoto international agreement)
- Increase contribution of RES in electricity production by 20% including a 10 % biofuels target

Are there conventional technologies to reach the targets?

 Long term new technologies are needed for large scale "clean" electricity generation

Short term available

- Wind turbines, reaching larger single capacity in future
- Nuclear, but with social reservations
- Gas CCGTs, reaching the limits of efficiency
- Large scale Cogeneration, where heat demand exists, already highly efficient

•CHP offers energy savings ranging between 15-40% when compared to the supply of electricity and heat from conventional power stations and boilers

Historically, electricity demand has grown at ~ 4% per year

From 2007-2010, electricity demand is expected to continue to grow while insufficient capacity will be developed ...

Demand

Supply

Cogeneration of Heat and Power

Typical Cogeneration Scheme:

Typical conventional power generation scheme:

EC Policy and CHP Directive

- EU target to double the electricity share of CHP by 18% until 2010 (COM/97/514) to emissions reduction of 65 Mt CO₂/year by 2010
- Directive 2004/8/EC, originally required complete transposition by 21 February 2006 (but delayed because of comitology)
- Following January 2008 EU targets, Germany, Spain, UK announced enhancing measures for CHP electricity to the system

CHP Development in Greece

- Cogeneration of heat and power in Greece has been relatively small
- Existing operating small CHP installations in the sugar and paper industry, oil refineries, fabrics industry etc.
- PPC is utilizing useful heat from conventional power plants for district heating purposes
- The total installed capacity of industrial CHP units in Greece was 232 MW in 2006 (1.8% of total national installed capacity)
- Power production of 1 TWh

The largest SEE Thermoelectrical CHP plant is in Greece: <u>334 MWe CHP Plant at St. Nicholas, Viotia</u>

334 MW CHP Plant, St. Nicholas

- Largest high-efficiency CHP plant in South Eastern Europe
- Investment of more than 200 million Euros by Aluminium S.A. under Mytilineos Holdings management
- EPC Contractor METKA S.A., high quality construction completed on time
- Ownership and operation by Endesa Hellas S.A.
- To supply all necessary steam for the alumina plant of Aluminium S.A. and replace fuel oil used for that purpose

334 MW CHP Plant, St. Nicholas

- Two General Electric high-efficiency gas turbines / power generator units (9E/PG171E)
- One steam turbine / power generator unit, ALSTOM heat recovery systems
- The steam turbine and each gas turbine are connected to a local sub-station that will be connected to the grid (150 kV).
- Natural gas pipeline ready on time by DESFA, HV interconnection completed and tested
- Testing almost complete, target for commercial operation in Fall 2008

334 MW CHP Plant: Fact sheet 1

- Full operation achieves primary energy savings of 12%-15% when compared to the separate electrical and thermal processes.
- Reduction of the annual consumption of oil fuel by 160,000 tons for the steam production process
- Reduction of CO₂ emissions by at least 1.25 million tons/year at national level to the benefit of the country
- Continuous efficient energy supply on competitive terms, is expected to produce 2,719 GWhe and 1,760 GWhth annually with an annual NG consumption of 510 million Nm³

Reduction in CO₂ Emissions from the operation of the 334 MW CHP plant

Fuel Savings from the Operation of the CHP Plant

334 MW CHP Plant: Fact sheet 2

- Effective contribution to the System Marginal Price (SMP) resulting to significant economic savings to Utility –Supplier (PPC) as well as to the national economy
- Reliable support to HTSO needs, high availability due to technology
- Supplementary to imports, back up units and modern ancillary services

334 MW CHP Plant: Fact sheet 3

- Contribution to the reduction of system losses, also alleviating congestion in the electrical power transmission network in the south system of Greece
- Effective contribution to the minimization of "blackouts" during the critical summer periods
- The Mavroneri-Antikyra gas pipeline will create new consumers for natural gas across all consumer categories

EC Communication COM (97) 514

- "Many of the important barriers to the development of CHP in Europe result from the relationship between cogenerators and electricity production utilities."
- "Market dominance of existing utilities act as a barrier to new market entrants by distorting the economics in such a way as to make CHP appear to be economically unattractive"

Major Barriers to Cogeneration

Lack of Motivation for industrial investors

 Power production usually has no necessity and is rather unfamiliar

Utilities used to conventional power generation

- Utilities "reserved" in enganging or investing in CHPs, therefore
 - Unfavourable conditions for supply of all, additional or stand-by power
 - Price Dumping to prevent CHP installation

New CHP-plants compete with depreciated generation capacity

Major Barriers to Cogeneration

- High dependence on conventional heat and power generation forms
- Natural Gas
 - High prices
 - Necessity to further expand the supply network
- EC CO₂ policy (2013-2020)
 Unfavourable projected policy towards CHP

- Administrative Barriers (e.g. licensing, operational)
- Uniqueness of the project (no prior experience on largescale CHP)
- Inadequacy of present Legal and Regulatory Framework to fully support large-scale CHP
 - No incentives to CHP units larger than 35 MW
 - Differentiation of large-scale CHP units
- The right to participate in the market under current rules
 - Dispatched unit in the electricity market
 - Directive 2004/8/EC has not yet been incorporated into national law
 - Resolution of the Greek Regulator on the promotion of CHP on the basis of useful heat demand

The way forward...

- Complete transposition of Directive 2004/8/EC into national law
- Promotion of the Resolution of the Greek Regulator in support of large-scale CHP ("must run")
- Overcome comitology and operational procedures
- Regulatory and Institutional development
- Further elaboration of support actions by the State towards CHP installations (incentives)
- Enhancement of energy efficiency operations

The way forward...

- Favourable treatment of high efficiency CHP installations in the revised EU ETS from 2013-2020
- Support of investment initiatives for energy production from cogeneration of heat and power
- Improvement of the investment environment for the installation of CHP plants
- Equitable exploitation of the scientific potential for the development of commercially viable innovations in the field of efficient energy production.

Thank you for your attention!

