CCS: a technology update

"Prospects for CO₂ Capture & Storage in Greece"

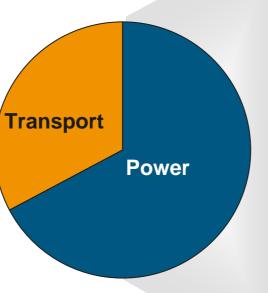
Louis Sonnnois

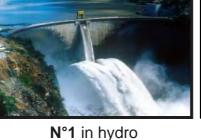
Kozani, December 17th 2009

- Introduction to Alstom
- Update on Carbon Capture
- Importance of Capture ready
- Conclusions, Q&A

The Alstom Group

A worldwide leader in its activities


Total orders 2008/09: €24.6 bn


N°1 in high speed and very high speed trains

N°1 in urban transport (metros and trams)

power

N°1 in conventional nuclear power island

N°1 in air quality control systems

N°1 in integrated power plants

Recent acquisition of wind power

N°1 in services for electric utilities

Alstom's answer to CO₂ challenges

Supply-side CO₂ emission reduction

- Technology Mix
 - Nuclear
 - Renewables

N° 1 hydro Tidal

Wind and geothermal

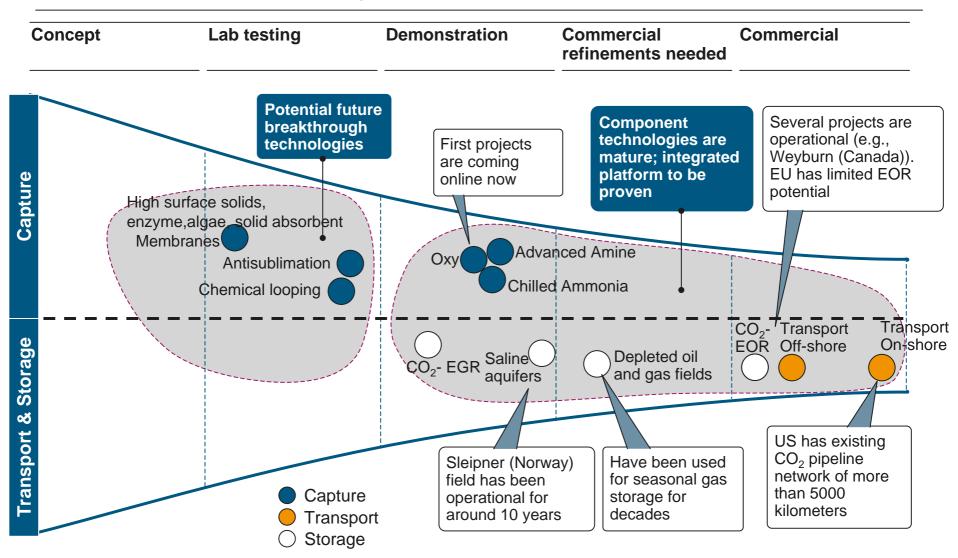
N° 1 nuclear (conventional islands) & biomass

- Production Efficiency
 - Fuel Preparation/Retrofit
 - New generation plants
 - Energy management

Efficiency: Plant optimisation & retrofit

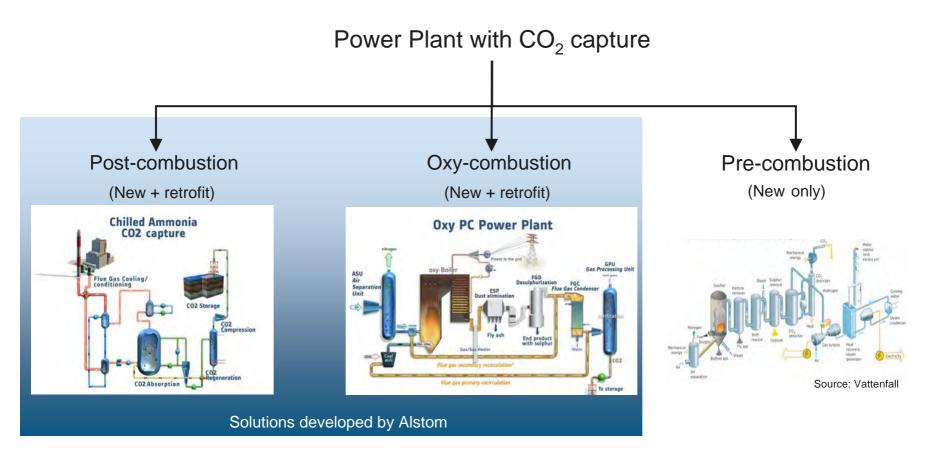
Carbon Capture and Storage

First CO₂ capture demo plant in the world


Alstom offers a portfolio of solutions

- Introduction to Alstom
- Update on Carbon Capture
- Importance of Capture ready
- Conclusions, Q&A

Status of CCS development



Source: Adapted from McKinsey

CO₂ Capture Solutions within Alstom

CCS must be also applied to the installed base

Main Partnerships & Projects Portfolio

Advanced Amines	Joint development programı West Virginia Pilot (USA) - C	Dow	ALSTOM	
	Belchatow (Poland) - Lignite	>250 MWe	PGE	ALSTOM
	Archer Daniels Midland (USA) -	ADM	ALSTOM	
Chilled Ammonia	Pleasant Prairie (US) – Coal	5 MWt		ALSTOM
	Karlshamm (Sweden) - Oil/Gas	5 MWt	e·on	ALSTOM
	Mountaineer (US) – Coal	58 MWt	AEP	ALSTOM
	Mongstad (Norway) – Gas	40 MWt	TCM Catching our Future	ALSTOM
	Mountaineer (US) – Coal	235 MWe	AEP	ALSTOM
	TransAlta (Canada) – Coal	200 MWe	Trans∧lta	ALSTOM
Oxy- combustion	Schwarze Pumpe (Germany) - Lignite	30 MWt	VATTENFALL 🍣	ALSTOM
	Lacq (France) – Gas	30 MWt	TOTAL	ALSTOM
	Alstom Boiler Simulation Facility Windsor (US) – Coals and Lignite	15 MWt	N≣TL	ALSTOM
	Jänschwalde (Germany) – Lignite	250 Mwe (Feasibility study)	VATTENFALL 🍣	ALSTOM

6 Pilots in commissioning/operation

Tests completed

Alstom activity on 12 major demonstrations

Operating

Vattenfall Schwarze Pumpe Germany - 30 MWth Oxy - Lignite

EoN Karlshamn Sweden - 5 MWth Chilled Ammonia - Fuel

Dow Chemical Co. USA, West Virginia Advanced Amines - Coal

AEP Mountaineer USA - 58 MWth Chilled Ammonia - Coal

Total Lacq France - 30 MWth Oxy - Gas

US - 15 MWth Oxy - Coals

Coming

PGE Belchatow Poland – 260 MWe Adv. Amines - Lignite

Statoil Mongstad Norway - 40 MWth Chilled Ammonia - Gas

Archer Daniels Midland USA, Illinois Advanced Amines - Coal

Vattenfall Jänschwalde Germany - 250 MWe Oxy - Lignite

Transalta
Canada - >200 MWe
Chilled Ammonia - Coal

AEP Mountaineer
USA – 235MWe
Chilled Ammonia - Coal

Focus on Belchatow project

Technology Demonstration Program

- MOU between Alstom and PGE Elektrownia Belchatow, for a large CCS facility
 - Host facility 850 MW lignite unit <u>under</u> construction
 - Greater than 1.8 million tonnes CO₂
 captured per year
 - Detailed engineering to start in January 2010
 - Operational in end 2014/early 2015

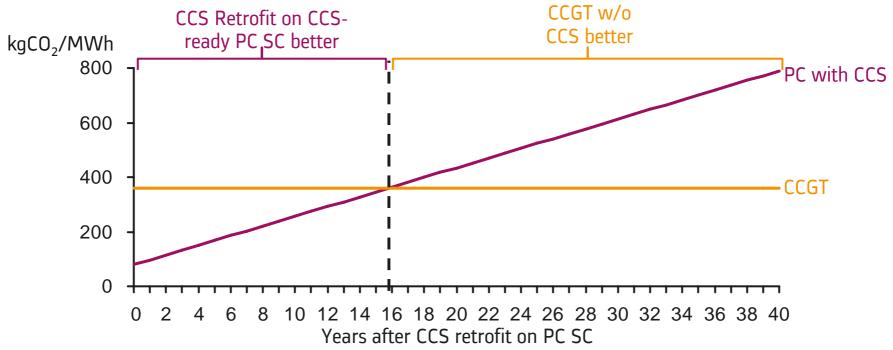
Belchatow Power Plant

Selected for receiving EEPR funding

CCS: The Roadmap

Capture	2005	2010	2015	2020	2025	2030	
Post- Combustion	Pilot / Demo	Large-scale Pre- commercial		Commercialisation			
Oxy- Combustion	Pilot / Demo	Large-scale Pre- commercial		Commercialisation			
Transport							
EU, US, Australia	Local projects, Demo and EOR		Pr	Progressive pipeline development depending on validation of storage sites			
Storage							
EU, US, Australia	EOR + validation of storage sites			Ramp-up of saline aquifer storage			

CCS will be fully commercial in 2015



- Introduction to Alstom
- Update on Carbon Capture
- Importance of Capture ready
- Conclusions, Q&A

Illustration of a CCS retrofit of a USC PC

Average emission factor of a PC USC capture-ready retrofitted with 90% capture and a CCGT without capture

Note: Considering a 40 years lifetime for PC and similar operation mode before and after CCS retrofit Source: Alstom Analysis

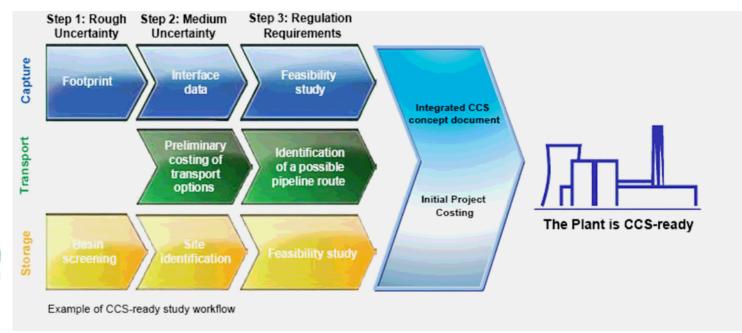
PC USC retrofitted with CCS before 16 years of operation has lower CO₂ emission factor on its <u>total lifetime</u> than a CCGT without CCS

Reality check – CCS-ready in the EU

European Union

- Scope: All combustion plants >300 Mwe (coal <u>and</u> gas)
- Requirements:
 - Assessment of availability of suitable storage sites and technical and economical feasibility of CO₂ capture and transport
 - Suitable space for future CO₂ capture system if conditions are met
- In addition, the UK has proposed to require, for all new coal-fired plants, to demonstrate CCS on at least 300MW of net capacity or 400MW of gross output and to retrofit CCS to the whole plant within 5 years of 2020

Europe is leading the CCS-ready way, let's do it!


Addressing CCS Ready CO₂ Transport and Storage Readiness Solutions

Alstom and Schlumberger combines their expertise to assess the CCS-readiness of power generation projects. Benefits are:

- > Anticipate emerging requirements in the world, already Pre-requisite for permitting in EU
- > Facilitate investment decisions and mitigate risk of carbon-stranded assets
- Optimize techno-economic options for future CCS conversion

Schlumberger

Transport and storage also have to be addressed

- Introduction to Alstom
- Update on Carbon Capture
- Importance of Capture ready
- Conclusions, Q&A

Conclusions

- Reducing CO₂ emissions from the Power sector is an absolute need
- A portfolio approach is needed: Renewables, Nuclear, Efficiency and CCS. Alstom provides all these solutions
- Retrofitable CCS technologies are a must to have
- Large-scale demonstration are key to demonstrates a competitive technology to capture CO₂ and Alstom's partnerships and demonstration projects are on the path for full-scale commercialisation of CO₂ capture technologies
- CCS-Ready Power plants are an absolute need, and demonstrate that the usage of local, cheap and abundant lignite resource can be compatible with the aim at limiting sharply CO₂ emissions

Alstom is fully committed to provide solutions for Clean Power production

www.power.alstom.com

