

THE ROLE OF NUCLEAR ENERGY IN BULGARIA'S ENERGY POLICY

SOFIA MAY 19, 2009

ALBENA TRASSIEVA STATE EXPERT, ENERGY STRATEGY DIRECTORATE MINISTRY OF ECONOMY AND ENERGY

THE PROJECT FOR BULGARIAN ENERGY STRATEGY BY 2020

THE NEW BULGARIAN ENERGY STRATEGY by 2020 is the basis and the first important step toward high efficient and low carbon energy systems

The next steps are to be developed (first on the European and then on national level) a policy PROGRAMME by 2030 and a VISION by 2050.

THE SCOPE is to be reached the optimal balance between the energy objectives and the economical growth as precondition for complex social benefits.

BULGARIAN ENERGY STRATEGY BY 2020

DISCUSSION AND ADOPTION OF THE NEW EU ENERGY POLICY

JULY 2008

PRESENTATION
OF THE CONCEPTION
OFTHE NEW BULGARIAN
ENERGY STRATEGY
BY 2020

JULY-NOVEMBER 2008

PUBLIC CONSULTATIONS ON THE CONCEPTION OF THE ENERGY STRATEGY BY 2020 NOVEMBER 2008

PUBLISHED
DRAFT OF
THE BULGARIAN
ENERGY
STRATEGY BY 2020

FROM NOVEMBER 2008

PUBLIC
CONSULTATION &
ECOLOGICAL
ASSESSMENT
OF THE STRATEGY
DRAFT

MAIN TARGES

SUSTAINABLE DEVELOPMENT

- improving energy efficiency in generation and consumption
- improving the energy mix by increasing the share of low-carbon energy
- accelerated technological progress, inc. improvement of new technologies (clean coal)

♦ COMPETITIVENESS

- free energy market will guarantee better services and lower prices

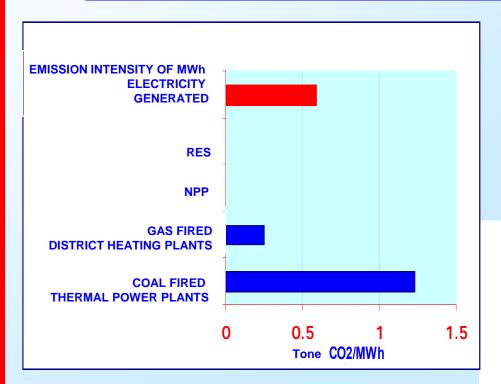
♦ ENERGY SECURITY

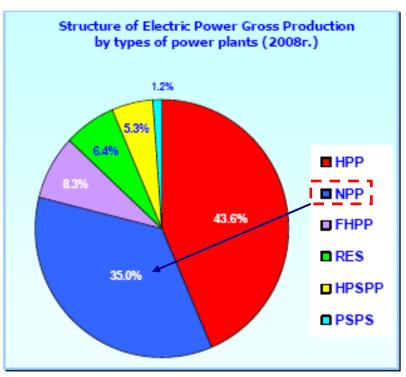
- diversification of energy resources by type, source, suppliers and routes
- solidarity enhancing partnership and cooperation between EU members states

THE BULGARIAN ENERGY MIX

	PRODUCTION OF INDIGENOUS ENERGY RESOURCES IN BULGARIA, thousand toe	1999	2000	2001	2002	2003	2004	2005	2006
	Coal	4341	4520	4497	4428	4645	4537	4177	4307
	Crude oil	44	46	34	38	31	31	30	28
	Natural gas	22	12	18	16	13	270	384	375
	Other solid fuels	413	550	532	627	671	717_	691	735
 	NPP and HPP	4591	5154	5426	5652	4854	4716	5257	5566
_	TOTAL	9411	10282	10507	10761	10214	10271	10539	11011

Source: NSI


RELIABLE ENERGY MIX


	Energy resource	Cost 2005 (EURO/ MWh)	Cost 2030 (EUR/MWh, CO2= 20-30	Emissions (kg CO2/ MWh)	Import dependence EU – 27		Efficiency	Price sensitivity	Reserves/ annual generation	
	NATURAL GAS	35 – 70	EUR/ton) 40 – 85	400 – 440	2005 / 57%	2030 84%	40 – 50%	Very high	64yrs	
	OIL	70 – 80	80 – 95	550	82%	93%	30%	Very high	42yrs.	
	COAL	30 – 50	45 – 70	750 – 800	39%	59%	40 – 48%	Medium	155yrs.	
	NUCLEAR FUEL	40 – 45	40 – 45	15	100% uranium ore		33%	Low	85yrs.	
	BIOMASS	25 – 85	25 – 75	30	0%	0%	30 - 60%	Medium	RES	
	WIND	35 – 175	28 – 170	10 – 30	0%	0%	95 – 98%	None		
	HYDRO	25 – 95	25 – 90	5 – 20	0%	0%	95 – 98%	None		
	SOLAR	140 – 430	55 – 260	100	0%	0%	-	None		

Source - International Energy Agency

NUCLEAR ENERGY- balance between Ecology and Energy Security

NUCLEAR ENERGY: STATUS AND NATIONAL POTENTIAL ANALYSIS

ADVANTAGES

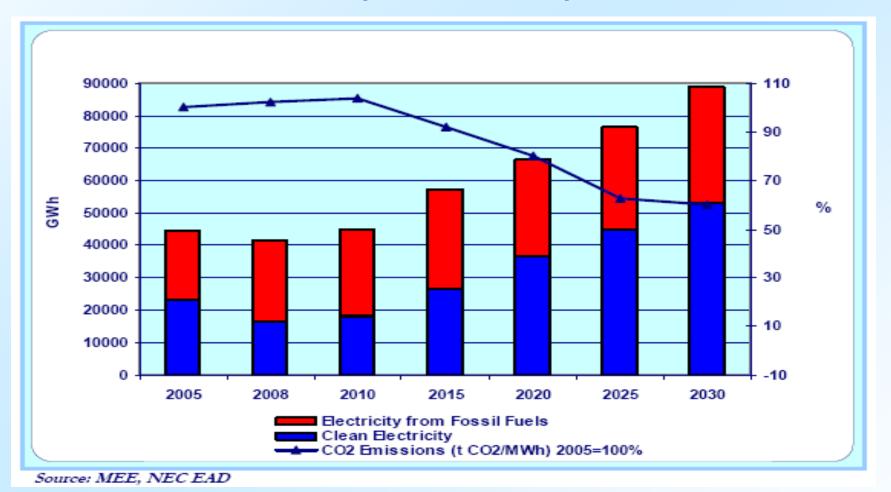
DISADVANTAGES

- A reliable and emission-free source for energy generation
- Has a big contribution towards meeting the electricity demands of the country's economy and households.
- 3. Nuclear fuel is consider as an indigenous energy source. The price of the nuclear fuel is relatively predictable.
- 4. The share of the fuel costs in the prime NPP generated electricity cost is stable (about 18%)
- Bulgaria fully support the Convention on Nuclear Safety
- 6. Two special nuclear funds have been established in the country (1995):
 - "Decommissioning of nuclear facilities" and "Safe storage of nuclear waste"
- 7. Kozloduy International Fund was set up with the financing from European commission and Donors' Assembly

- Early decommissioning of units 1-4 of NPP "Kozloduy" resulted in complex economic, environmental and social consequences
- The generation of nuclear energy is not flexible and entails certain substantial permanent expenses
- The prime cost of electricity from NPP will increase...
- 4. The two nuclear funds "Decommissioning of nuclear facilities" and "Safe storage of nuclear waste" were set up in 1995 but money started being transferred to them at the end of 1999
- The storage of RAW from nuclear plant has not yet been solved

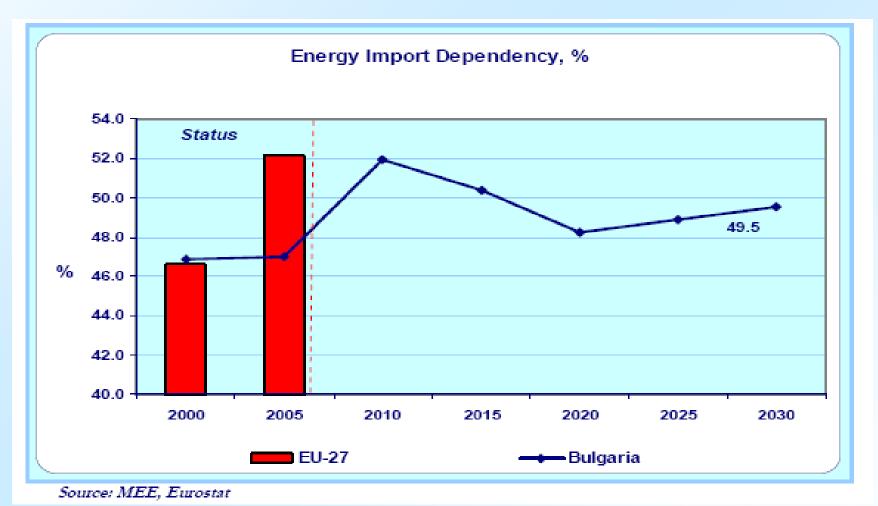
NUCLEAR ENERGY: STRATEGIC DECISIONS AND DOCUMENTS

- 1. A LOWER CARBON ENERGY MIX, STABLE PRICES AND OPPORTUNITIES FOR GROWING EXPORT CAN ONLY BE ACHIEVED TROUGH THE SUSTAINABLE DEVELOPMENT OF NUCLEAR ENERGY.
- 2. INTRODUCTION OF THE HIGHEST POSSIBLE NUCLEAR SAFETY STANDARS AND MANAGEMENT OF RAW AND SNF ARE ELEMENTS OF THE NATIONAL SECURITY AND WILL REMAIN A TOP PRIORITY OF THE COUNTRY'S ENERGY POLICY.
- 3. SETTING UP AND MAINTENANCE OF A MODERN SYSTEM FOR TRAINING AND RE-TRAINING OF NUCLEAR ENERGY EXPERTS IS A CRUCIAL PRECONDITION FOR RELIABLE AND SAFE OPERATION OF NUCLEAR PLANTS.
- 4. BULGARIA IS ACTIVELY PARTICIPATING IN THE MOST INTERNATIONAL INITIATIVES FOR SUSTAINABLE DEVELOPMENT OF NUCLEAR ENERGY
- 5. THE NEW EUROPEAN ENERGY POICY IS SUPPORTING THE DEVELOPMENT AND THE USE OF NUCLEAR ENERGY



- UPDATING THE SNF AND RAW MANAGEMENT STRATEGY
- 2. PROGRAMME FOR EFFICIENT USE OF INDIGENOUS /LENERGY RESOURCES, inc. OPTIONS TO RESTART URANIUM MINING
- 2. PROGRAMME FOR TRAINING AND QUALIFICATION OF EXPERTS AND NEW TECHNOLOGIES

DEVELOPMENT FORECASTS AND EXPECTED RESULTS2020 - 2030


The share of the generated clean energy (RES and nuclear) will increase from 41 % in 2008 to 55% in 2020 and up to 60% in 2030. As a result, CO2 emissions emitted for the generation of 1 MWh electricity will decrease by 40%

DEVELOPMENT FORECASTS AND EXPECTED RESULTS 2020 - 2030

Thanks to the development of nuclear power plants and power plants on local coal, the country's dependence on imported energy sources remains stable and below the average level for EU-27

- NUCLEAR ENERGY CONTRIBUTES TO THE EU'S SECURITY OF ENERGY SUPPLY AS A MAJOR SOURCE OF BASELOAD ELECTRICITY, NOT INCREASING GREENHOUSE GAS EMISSIONS AND THUS COMBATING CLIMATE CHANGE
- ONE THIRD OF ELECTRICITY GENERATION IN THE EU COMES FROM NUCLEAR ENERGY
- IN THE CONTEXT OF THE EU CO₂ REDUCTION OBJECTIVE THE DECISIONS ABOUT NEW INVESTMENTS AND LIFETIME EXTENSION OF NUCLEAR PLANTS BECOME MORE PRESSING
- THE EU MAINTAINS THE HIGHEST SAFETY, NON-PROLIFERATION, SECURITY AND ENVIRONMENTAL PROTECTION STANDARDS FOR NUCLEAR GENERATION. THE EU NEEDS TO DEVELOP A COMMON LEGISLATIVE FRAMEWORK WITH RESPECT TO THE SAFETY OF NUCLEAR INSTALLATIONS AND THE MANAGEMENT OF NUCLEAR WASTE.
- A DIRECTIVE SETTING UP A COMMUNITY FRAMEWORK FOR NUCLEAR SAFETY IS UNDER PREPARATION, FOLLOWING THE ESTABLISHMENT OF THE HIGH LEVEL GROUP ON NUCLEAR SAFETY AND WASTE MANAGEMENT AND THE DISCUSSIONS WITHIN THE EUROPEAN NUCLEAR ENERGY FORUM.

Thank you for the attention!

a.trassieva@mee.government.bg + 359 2 92 63 262