It's time for

clean and competitive power

WÄRTSILÄ ENERGY SOLUTIONS

GEORGIOS A. LIVANOS BUSINESS DEVELOPMENT MANAGER WARTSILA GREECE S.A.

1 © Wärtsilä 11 February 2016 Wärtsilä Energy Solutions

DISCLAIMER

This document is provided for informational purposes only and may not be incorporated into any agreement. The information and conclusions in this document are based upon calculations (including software built-in assumptions), observations, assumptions, publicly available competitor information, and other information obtained by Wärtsilä or provided to Wärtsilä by its customers, prospective customers or other third parties (the "**information**") and is not intended to substitute independent evaluation. No representation or warranty of any kind is made in respect of any such information. Wärtsilä expressly disclaims any responsibility for, and does not guarantee, the correctness or the completeness of the information. The calculations and assumptions included in the information do not necessarily take into account all the factors that could be relevant.

Nothing in this document shall be construed as a guarantee or warranty of the performance of any Wärtsilä equipment or installation or the savings or other benefits that could be achieved by using Wärtsilä technology, equipment or installations instead of any or other technology.

All the information contained herein is confidential and may contain Wärtsilä's proprietary information and shall not be distributed to any third parties without Wärtsilä's prior written consent.

Installed base* – Wärtsilä powering the world

WÄRTSILÄ DUAL-FUEL REFERENCES

MERCHANT	OFFSHORE	SPECIALS	DF CONVERSION	2-STROKE DF	DF POWER PLANTS
732 ENGINES	132 ENGINES	61 ENGINES	28 ENGINES	11 ENGINES	352 ENGINES
168 LNG carriers	24 Offshore supply	9 Ferries	4 FPSO vessels	4 Chemical tankers	75 plants
8 Multigas carriers	5 FPSO vessels	6 Tugs	2 RORO vessels	4 Container vessels	Output 4877 MW
2 Product tankers	4 FSRU vessels	3 ROPAX vessels	1 Chemical tanker	3 LNG carriers	Online since 1997
1 Bulk tanker	2 Platforms	1 Navy vessel	1 Ferry		
1 CNG carrier	1 FSO vessel	1 Icebreaker	1 IWW vessel		
		1 IWW vessel			
		1 Guide ship			

>1300 engines >12 million running hours

WÄRTSILÄ GAS ENGINE REFERENCES

INDUSTRY

361 PLANTS 779 ENGINES 3551 MW 53 COUNTRIES

IPP

116 PLANTS560 ENGINES4358 MW22 COUNTRIES

UTILITY

131 PLANTS501 ENGINES3993 MW31 COUNTRIES

>1900 engines >12,000 MW >60 countries

How to get LNG? – Conventional LNG supply chain

Upstream Gas exploration Gas processing and Liquefaction

Large scale LNG shipping

HUB LNG import and degasification

Pipeline

End user (NG)

How to get LNG? – Mid and Small scale LNG

- Present LNG fleet have been focusing on transocean supplies, i.e ship sizes are spanning from 120 – 250,000 m³.
- Small size (1 20,000 m³) supply vessel availability is limited, worldwide fleet about 20 vessels, in general the small-mid scale LNG supply infrastructure is not existing.

LNG Recieving Terminal – Power Plant

"Does it make sense to invest into a Single Purpose LNG Receiving Terminal - as a fuel system for a Power Plant?"

Wärtsilä Power Plant – Technical Solution

Chosen Power Plant Characteristics for the study

Power Output

- Single Cycle, gas engine 9MW and 18 MW
- Net Power at Step-Up Trafo: 50, **100**, 300 MW
- Outgoing Voltage: 110 kV

Fuel Consumption

- Fuel: LNG (Natural Gas)
- Generator set efficiency: 46%
- Own electrical consumption: 4 MW at 400V
- Plan Net Electrical Efficiency: 43,1 44,5%

Ambient Conditions

- Average ambient temp: 29 C (min. 10 C, max. 40C)
- Height above sea level: max. 100 m
- Methane number 80

Operational Profile

- Annual Running Hours: 7000
- Plant average load: 80%
- Utilization factor: 64%

Plant Size	50 MWe	100 MWe	300 MWe	
Prime Mover	6X20V34SG	12X20V34SG	18X20V50SG	
Plant Net Output @site conditions	53 MWe	106 MWe	304 Mwe	
Net Electrical Eff. Net Heat Rate	43,1% 8271 kJ/kWhe	43,2% 8250 kJ/kWhe	44,5% 8013 kJ/kWhe	
Plant Size	50 MWe	100 MWe	300 MWe	
LNG cons/day	511 m3	1022 m3	2840 m3	

LNG Consumption at max. and average loads

Plant Size	50 MWe	100 MWe	300 MWe
Power Plant Consumption, max. load	511 m3/day	1022 m3/day	2840 m3/day
Additional Gas Take-Off, max. Load	701 m3/day	1360 m3/day	1754 m3/day
Total Gas Consumption, max. load	1212 m3/day	2382 m3/day	4593 m3/day
Total Gas Consumption, average load	677 m3/day	1311 m3/day	2604 m3/day
Plant Size	50 MWe	100 MWe	300 MWe
Annual Consumption, Average load	247.000 m3	478.000 m3	950.000 m3

- The most important parameter when optimizing the terminal is the LNG supply. The ship size will determine the cargo that will be received. Shipping time and needed weather margins will determine the time between cargos. But also available HUB slots and costs need to be considered.
- The average consumption requirement will determine the slope of the volume curves and thus the needed re-gasification capacities.
- Heel Requirement is for safe-guarding the cry-temperature in the LNG tank at all times

LNG Carrier Capacity Determination

Main Parameters for carrier capacity determination:

- Transportation Distance: 1500 NM
- LNG Carrier average speed: 15 Knots
- LNG Tank sizes as defined
- Gas consumption as defined
- For average capacity

	Carrier Capacity		
Plant Size	No Gas Off-Take	With Gas Off-Take	
50 MWe	6000 m3	13.000 m3	
100 MWe	12.000 m3	30.000 m3	
300 MWe	35.000 m3	52.000 m3	

LNG Storage Tank Capacity Determination

Main Parameters for storage tank capacity determination:

- Safety inventory: 7 days
- Heel requirement: 10%
- Shipping information as defined
- Gas consumption as defined
- For average gas consumption

	LNG-Tank Capacity		
Plant Size	No Gas Off-Take	With Gas Off-Take	
50 MWe	10.000 m3	25.000 m3	
100 MWe	20.000 m3	45.000 m3	
300 MWe	57.000 m3	90.000 m3	

LNG Recieving Terminal – Power Plant

Smart Power Generation meets LNG

LNG Feasibility Analyze – STEP 1

LNG "Terminal Effect"

LNG "Terminal Effect"

	Terminal Effect - \$/MMBtu		
Plant Size	No Gas Off-Take	With Gas Off-Take	
50 MWe	7,80	4,94	
100 MWe	5,18	3,85	
300 MWe	3,50	3,1	

Terminal Related Transportation

LNG Based "Power Tariff"

Final Conclusions

Single Purpose Terminal can make sense

- For remote location LNG can be the only acceptable fuel. Alternative would be HFO
- LNG Terminal can serve the regional industry with clean and affordable fuel
- LNG can be a domestic fuel

Terminal economics is case specific

- Each case must be studied indivudually
- LNG FOB-price dominates the Distribution Gas Price structure
- Additional Gas Off-Take will benefit the project feasibility
- Difference between the best FOB-price and Distribution price is around 20%

Gas fired power plant – a natural choice

- For "Green-Field" power development LNG is preferable vs. HFO
- Power tariff difference is 37% between the two extremities
- At its highist the "Terminal Effect" will increase the power tariff with around 25%
- At its lowest the "Terminal Effect" will increase the power tariff with less than 10%

With right LNG FOB price and power tariff a Single Purpose LNG Terminal can make sense...

Smart Power Generation

www.wartsila.com